Improving YANGsaf F0 Estimator with Adaptive Kalman Filter

نویسنده

  • Kanru Hua
چکیده

We present improvements to the refinement stage of YANGsaf[1] (Yet ANother Glottal source analysis framework), a recently published F0 estimation algorithm by Kawahara et al., for noisy/breathy speech signals. The baseline system, based on time-warping and weighted average of multi-band instantaneous frequency estimates, is still sensitive to additive noise when none of the harmonic provide reliable frequency estimate at low SNR. We alleviate this problem by calibrating the weighted averaging process based on statistics gathered from a Monte-Carlo simulation, and applying Kalman filtering to refined F0 trajectory with time-varying measurement and process distributions. The improved algorithm, adYANGsaf (adaptive Yet ANother Glottal source analysis framework), achieves significantly higher accuracy and smoother F0 trajectory on noisy speech while retaining its accuracy on clean speech, with little computational overhead introduced.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Adaptive Extended Kalman Filter for a Class of Nonlinear Systems

This paper proposes a new adaptive extended Kalman filter (AEKF) for a class of nonlinear systems perturbed by noise which is not necessarily additive. The proposed filter is adaptive against the uncertainty in the process and measurement noise covariances. This is accomplished by deriving two recursive updating rules for the noise covariances, these rules are easy to implement and reduce the n...

متن کامل

Doppler and bearing tracking using fuzzy adaptive unscented Kalman filter

The topic of Doppler and Bearing Tracking (DBT) problem is to achieve a target trajectory using the Doppler and Bearing measurements. The difficulty of DBT problem comes from the nonlinearity terms exposed in the measurement equations. Several techniques were studied to deal with this topic, such as the unscented Kalman filter. Nevertheless, the performance of the filter depends directly on the...

متن کامل

Tuning of Extended Kalman Filter using Self-adaptive Differential Evolution Algorithm for Sensorless Permanent Magnet Synchronous Motor Drive

In this paper, a novel method based on a combination of Extended Kalman Filter (EKF) with Self-adaptive Differential Evolution (SaDE) algorithm to estimate rotor position, speed and machine states for a Permanent Magnet Synchronous Motor (PMSM) is proposed. In the proposed method, as a first step SaDE algorithm is used to tune the noise covariance matrices of state noise and measurement noise i...

متن کامل

Nonlinear H Control for Uncertain Flexible Joint Robots with Unscented Kalman Filter

Todays, use of combination of two or more methods was considered to control of systems. In this paper ispresented how to design of a nonlinear H∞ (NL-H∞) controller for flexible joint robot (FJR) based on boundedUKF state estimator. The UKF has more advantages to standard EKF such as low bios and no need toderivations. In this research, based on spong primary model for FJRs, same as rigid robot...

متن کامل

Stator Fault Detection in Induction Machines by Parameter Estimation Using Adaptive Kalman Filter

This paper presents a parametric low differential order model, suitable for mathematically analysis for Induction Machines with faulty stator. An adaptive Kalman filter is proposed for recursively estimating the states and parameters of continuous–time model with discrete measurements for fault detection ends. Typical motor faults as interturn short circuit and increased winding resistance ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017